\(\int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x)) \, dx\) [353]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 61 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x)) \, dx=\frac {2 a E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d} \]

[Out]

2*a*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*a*(cos(1/2*d*x
+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*a*sin(d*x+c)*cos(d*x+c)^(1/2)/
d

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 61, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {4310, 2827, 2719, 2715, 2720} \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x)) \, dx=\frac {2 a \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d} \]

[In]

Int[Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x]),x]

[Out]

(2*a*EllipticE[(c + d*x)/2, 2])/d + (2*a*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*a*Sqrt[Cos[c + d*x]]*Sin[c + d*
x])/(3*d)

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 4310

Int[(csc[(a_.) + (b_.)*(x_)]*(B_.) + (A_))*(u_), x_Symbol] :> Int[ActivateTrig[u]*((B + A*Sin[a + b*x])/Sin[a
+ b*x]), x] /; FreeQ[{a, b, A, B}, x] && KnownSineIntegrandQ[u, x]

Rubi steps \begin{align*} \text {integral}& = \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x)) \, dx \\ & = a \int \sqrt {\cos (c+d x)} \, dx+a \int \cos ^{\frac {3}{2}}(c+d x) \, dx \\ & = \frac {2 a E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {1}{3} a \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 a E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 4.89 (sec) , antiderivative size = 222, normalized size of antiderivative = 3.64 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x)) \, dx=\frac {a (1+\cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \left (\frac {3 (3 \cos (c-d x-\arctan (\tan (c)))+\cos (c+d x+\arctan (\tan (c)))) \csc (c) \sec (c)}{\sqrt {\sec ^2(c)}}-4 \cos (c+d x) \sqrt {\cos ^2(d x-\arctan (\cot (c)))} \sqrt {\csc ^2(c)} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec (d x-\arctan (\cot (c))) \sin (c)-4 \cos (c+d x) (3 \cot (c)-\sin (c+d x))-6 \cos (c) \csc (d x+\arctan (\tan (c))) \, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sqrt {\sec ^2(c)} \sqrt {\sin ^2(d x+\arctan (\tan (c)))}\right )}{12 d \sqrt {\cos (c+d x)}} \]

[In]

Integrate[Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x]),x]

[Out]

(a*(1 + Cos[c + d*x])*Sec[(c + d*x)/2]^2*((3*(3*Cos[c - d*x - ArcTan[Tan[c]]] + Cos[c + d*x + ArcTan[Tan[c]]])
*Csc[c]*Sec[c])/Sqrt[Sec[c]^2] - 4*Cos[c + d*x]*Sqrt[Cos[d*x - ArcTan[Cot[c]]]^2]*Sqrt[Csc[c]^2]*Hypergeometri
cPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[d*x - ArcTan[Cot[c]]]*Sin[c] - 4*Cos[c + d*x]*(3*Cot[
c] - Sin[c + d*x]) - 6*Cos[c]*Csc[d*x + ArcTan[Tan[c]]]*HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTa
n[Tan[c]]]^2]*Sqrt[Sec[c]^2]*Sqrt[Sin[d*x + ArcTan[Tan[c]]]^2]))/(12*d*Sqrt[Cos[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(224\) vs. \(2(107)=214\).

Time = 6.24 (sec) , antiderivative size = 225, normalized size of antiderivative = 3.69

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a \left (4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(225\)

[In]

int(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-2/3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a*(4*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-2*co
s(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2+(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(
cos(1/2*d*x+1/2*c),2^(1/2))-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*
x+1/2*c)^2-1)^(1/2))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/
2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 125, normalized size of antiderivative = 2.05 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x)) \, dx=\frac {2 \, a \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - i \, \sqrt {2} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 i \, \sqrt {2} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 i \, \sqrt {2} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{3 \, d} \]

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

1/3*(2*a*sqrt(cos(d*x + c))*sin(d*x + c) - I*sqrt(2)*a*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c
)) + I*sqrt(2)*a*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*I*sqrt(2)*a*weierstrassZeta(-4,
 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*I*sqrt(2)*a*weierstrassZeta(-4, 0, weierstr
assPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/d

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x)) \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**(3/2)*(a+a*sec(d*x+c)),x)

[Out]

Timed out

Maxima [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x)) \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)*cos(d*x + c)^(3/2), x)

Giac [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x)) \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)*cos(d*x + c)^(3/2), x)

Mupad [B] (verification not implemented)

Time = 13.74 (sec) , antiderivative size = 53, normalized size of antiderivative = 0.87 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x)) \, dx=\frac {2\,a\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,a\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{3\,d}+\frac {2\,a\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{3\,d} \]

[In]

int(cos(c + d*x)^(3/2)*(a + a/cos(c + d*x)),x)

[Out]

(2*a*ellipticE(c/2 + (d*x)/2, 2))/d + (2*a*ellipticF(c/2 + (d*x)/2, 2))/(3*d) + (2*a*cos(c + d*x)^(1/2)*sin(c
+ d*x))/(3*d)